Fischer indole synthesis in DMSO/AcOH/H2O under continuous flow conditions

Author:

Wang Mei12,Yan Shenghu12,Zhang Yue2,Gu Shunlin12ORCID

Affiliation:

1. School of Pharmacy, Changzhou University, Changzhou, P.R. China

2. Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, P.R. China

Abstract

A new continuous flow synthetic method for preparing indole and its derivatives are successfully developed to overcome the disadvantages of traditional batch methods, such as low conversion rates, long reaction times, and amplification effects. The method represents a sustainable and efficient preparation of indole and its derivatives without the need for additional catalysts. By investigating the effects of the reaction temperature, the solvent, the equivalence ratio, and the residence time, high conversion rates and excellent yields were simultaneously achieved within 20 min under optimized conditions. For the template reaction, DMSO/H2O/AcOH = 2:1:1 is used as the solvent, the reaction temperature is 110 °C, and the ratio of phenylhydrazine hydrochloride to cyclopentanone is 1:1.05. Indole and a wide array of its derivatives are synthesized to verify the universality of the method, and most of the reactions exhibit satisfactory conversion rates and high yields are obtained. This new continuous flow method is more suitable for industrial scale-up relative to traditional batch methods.

Funder

Continuous Flow Engineering Laboratory of the National Petroleum and Chemical Industry

Publisher

SAGE Publications

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3