Functional linear mixed models for irregularly or sparsely sampled data

Author:

Cederbaum Jona1,Pouplier Marianne2,Hoole Phil2,Greven Sonja1

Affiliation:

1. Department of Statistics, Faculty of Mathematics, Computer Science and Statistics, Ludwig-Maximilians-University, Munich, Germany

2. Department of Phonetics and Speech Processing, Faculty of Languages and Literature, Ludwig-Maximilians-University, Munich, Germany

Abstract

We propose an estimation approach to analyse correlated functional data, which are observed on unequal grids or even sparsely. The model we use is a functional linear mixed model, a functional analogue of the linear mixed model. Estimation is based on dimension reduction via functional principal component analysis and on mixed model methodology. Our procedure allows the decomposition of the variability in the data as well as the estimation of mean effects of interest, and borrows strength across curves. Confidence bands for mean effects can be constructed conditionally on estimated principal components. We provide R -code implementing our approach in an online appendix. The method is motivated by and applied to data from speech production research.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3