Nanoparticle shape effect on the thermal behaviour of moving longitudinal porous fin

Author:

Gireesha BJ1,Sowmya G1,Gorla Rama Subba Reddy2ORCID

Affiliation:

1. Department of PG Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, India

2. Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA

Abstract

A numerical examination of nanoliquid flow over a longitudinal porous fin moving with constant speed is undertaken in the current study. Nickel alloy is used as a nanoparticle, and engineered fluid [Formula: see text] is used as a based fluid. In addition, various shapes of nanoparticles like sphere, disc and needle shapes are considered. The generated ordinary differential equation has been nondimensionalized and integrated by using the Runge–Kutta–Fehlberg method. The influence of suitable parameters on the enhancement of heat transfer has been discussed with the help of plotted graphs. Also, the influence of diverse shaped nanoparticle is analysed mathematically. It is found that sphere shaped nanoparticles show better transfer of heat than the disc and needle shapes.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3