Improvement of mechanical-antibacterial performances of AR/PMMA with TiO2 and HPQM treated by N-2(aminoethyl)-3-aminopropyl trimethoxysilane

Author:

Tangudom Paveena1,Martín-Fabiani Ignacio2,Prapagdee Benjaphorn3,Wimolmala Ekachai1,Markpin Teerasak1,Sombatsompop Narongrit1ORCID

Affiliation:

1. Polymer PROcessing and Flow (P-PROF) Research Group, Materials Technology Program, School of Energy, Environment and Materials, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand

2. Department of Materials, Loughborough University, Loughborough, UK

3. Laboratory of Environmental Biotechnology, Faculty of Environment and Resource Studies, Mahidol University, Salaya, Thailand

Abstract

The mechanical and antibacterial properties of acrylic rubber/poly(methyl methacrylate) (AR/PMMA) blend at 10 to 50 wt% of AR content with non-treated and treated titanium dioxide (TiO2) and 2-Hydroxypropyl-3-piperazinyl-quinoline carboxylic acid methacrylate (HPQM) by N-2(aminoethyl)-3-aminopropyl trimethoxysilane were studied. The antibacterial property against Escherichia coli was evaluated. The results found that the mechanical properties of ARt-TiO2/PMMA and ARt-HPQM/PMMA blend were higher than that of the ARTiO2/PMMA and ARHPQM/PMMA blend. For antibacterial property, the ARHPQM/PMMA and ARt-HPQM/PMMA blend could act as the antibacterial material, while the ARTiO2/PMMA blend did not show. However, the ARt-TiO2/PMMA blend could inhibit bacterial cell growth with 10 to 30 wt% of AR content. The recommended compositions of ARt-TiO2/PMMA blend, which improved both mechanical and antibacterial properties, were 10 to 30 wt% of AR and were 10 to 50 wt% of AR for ARt-HPQM/PMMA. Moreover, the UV radiation increased the antibacterial properties by the destruction of the interaction in treated TiO2 and HPQM and improved the antibacterial performance of ARt-TiO2/PMMA and ARt-HPQM/PMMA blend.

Funder

The Thailand Research Fund

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3