The effect of Polyolefin elastomer on the 3D printing properties of Acrylonitrile butadiene styrene, Polyethylene, and Polypropylene

Author:

Xia Lingqin12ORCID,Yu Xiang1,Wang Ruiquan1,Chen Guang1,Fang Yihang1

Affiliation:

1. Department of Additive Manufacturing, Zhejiang Institute of Mechanical & Electrical Engineering, Hangzhou, China

2. Zhejiang Huashuo Technology Co.,Ltd, Ningbo, China

Abstract

This study investigates the influence of incorporating 30 wt.% polyolefin elastomer (POE) on the physical, mechanical, and microstructural properties of 3D printed three widely used thermoplastic: acrylonitrile butadiene styrene (ABS), low density polyethylene (LDPE), and polypropylene (PP). Three ABS-POE, LDPE-POE, and PP-POE blends were prepared by melt mixing method and printed by direct granule-based material extrusion, and finally the printability, microstructure, thermal, and mechanical properties aiming for potential usage in various applications were investigated. Dynamic Mechanical Thermal Analysis (DMTA) results revealed a notable shift in the glass to rubber phase to a higher temperature range and an increase in the glass transition temperature due to the presence of POE elastomers. Mechanical properties of the 3D printed samples were meticulously examined and compared with prior research. All blend samples containing 30 wt.% POE exhibited significantly enhanced ductility, attributed to aligned polymer chain reactions. ABS-POE samples demonstrated superior mechanical properties compared to PP-POE and LDPE-POE samples, likely attributed to fewer potential failure points, as evidenced by Scanning Electron Microscope (SEM) analysis of fractured cross-sections of 3D-printed samples immersed in liquid nitrogen. Additionally, 3D-printed samples with combined infill orientations (0° and 90°) were generated and subjected to tensile strength testing. Furthermore, samples 3D-printed specimens by honeycomb filling pattern for compression tests were included in the study. Microstructure analyses identified common 3D printing defects responsible for failure modes in the printed samples.

Funder

Jianbing Lingyan Project

Zhejiang Province Higher Vocational Education “14th Five Year Plan” Teaching Reform Project

Zhejiang Provincial Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3