Long term accelerated influence on thermo-mechanical properties of glass/carbon fiber reinforced interpenetrating polymer network hybrid composites

Author:

Priya Karjala Santhosh12,Vijaya Kumar K R2,Suresh G3ORCID,Ganesamoorthy R4,Vezhavendhan R5,Meenakshi C M6

Affiliation:

1. Department of Mechanical Engineering, Sreenivasa Institute of Technology and Management Studies, Chittoor, India

2. Departmentof Mechanical Engineering, Dr.M.G.R.Educational and Research Institute, Chennai, India

3. Departmentof Mechanical Engineering, Rajalakshmi Institute of Technology, Chennai, India

4. Center for Material Research, Chennai Institute of Technology, Chennai, India

5. School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India

6. Dept. of Mechanical Engineering, Bharath Institute of Higher Education and Research, Chennai, India

Abstract

The prime importance of this work is that to compare the influence of hygrothermal analysis on the physical properties of different variant of interpenetrating polymer network (IPN) blend reinforced with E-Glass/Carbon and combination of both (hybrid) fibers. In this study, combinations of epoxy (EP)/polyurethane (PU), vinyl ester (VER)/polyurethane (PU), and epoxy (EP)/vinyl ester (VER) have been taken as the matrix material (IPN) to reinforce the glass, carbon, and combination of both fibers. Moreover, prepared specimens are subjected with boiling water immersion test by maintaining the temperature of 45°C, 55°C, and 65°C in order to thoroughly understand the influence of moisture absorption and temperature in their physical attribution as per ASTM standards. Besides, to better understand the thermal stability and compatibility, thermal-gravimetric (TGA) analysis and burn-off test were conducted as well. During this study, it was found that, combination of VER/PU possesses the high moisture absorption resistance amongst all variants (0.725% for 45°C, 0.854% for 55°C, 1.234 for 65°C). Similarly, epoxy/vinyl ester reinforced glass fiber IPN laminate (EVG) has shown notable TGA value as 418.6°C, as well burn-off test also shown that hybrid IPN composites have better wettability (less void presence) than all other laminates (EPGC-0.9%, VPGC-0.89%, EVGC-0.92%). Further, losses of physical strengths have been noticed on all specimens upon subjection on hygrothermal environment irrespective of IPN blend and fiber constituents.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3