Phase morphology, mechanical, and thermal properties of fiber-reinforced thermoplastic elastomer: Effects of blend composition and compatibilization

Author:

Fazli Ali1,Rodrigue Denis1ORCID

Affiliation:

1. Department of Chemical Engineering, Université Laval, Quebec, QC, Canada

Abstract

In this work, recycled high density polyethylene (rHDPE) was compounded with regenerated tire rubber (RR) (35–80 wt.%) and reinforced with recycled tire textile fiber (RTF) (20 wt.%) as a first step. The materials were compounded by melt extrusion, injection molded, and characterized in terms of morphological, mechanical, physical, and thermal properties. Although, replacement of the rubber phase with RTF compensated for tensile/flexural moduli losses of rHDPE/RR/RTF blends because of the more rigid nature of fibers increasing the composites stiffness, the impact strength substantially decreased. So, a new approach is proposed for impact modification by adding a blend of maleic anhydride grafted polyethylene (MAPE)/RR (70/30) into a fiber-reinforced rubberized composite. As in this case, a more homogeneous distribution of the fillers was observed due to better compatibility between MAPE, rHDPE, and RR. The tensile properties were improved as the elongation at break increased up to 173% because of better interfacial adhesion. Impact modification of the resulting thermoplastic elastomer (TPE) composites based on rHDPE/(RR/MAPE)/RTF was successfully performed (improved toughness by 60%) via encapsulation of the rubber phase by MAPE forming a thick/soft interphase decreasing interfacial stress concentration slowing down fracture. Finally, the thermal stability of rubberized fiber-reinforced TPE also revealed the positive effect of MAPE addition on molecular entanglements and strong bonding yielding lower weight loss, while the microstructure and crystallinity degree did not significantly change up to 60 wt.% RR/MAPE (70/30).

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3