Graphene nanoplatelets/epoxy nanocomposites: A review on functionalization, characterization techniques, properties, and applications

Author:

Bilisik Kadir12ORCID,Akter Mahmuda13ORCID

Affiliation:

1. Faculty of Engineering, Nano/Microfiber Preform Design and Composite Laboratory, Department of Textile Engineering, Erciyes University, Talas-Kayseri, Turkey

2. Nanotechnology Application and Research Centre (ERNAM), Erciyes University, Talas-Kayseri, Turkey

3. Faculty of Textile Fashion Design and Apparel Engineering, Department of Apparel Engineering, Bangladesh University of Textiles, Tejgaon-Dhaka, Bangladesh

Abstract

Graphene nanoplatelets (GNPs) have received immense attention from the global scientific research community in the 21st century due to their two-dimensional planar structure, high surface area, functionalization abilities, and notable thermal-mechanical-electrical properties. When appropriately integrated into polymer matrices, graphene nanosheets improve the mechanical performance of polymer under static and high-strain rate loading. On the other hand, surface modification of GNPs through functionalization enhances dispersibility and interfacial strength of GNPs/polymer composites. Computational methods for GNPs-based nanocomposites considering micromechanical and multiscale modeling were also developed to predict their thermo-mechanical and electrical properties. These nanocomposite materials have been identified as having a wide range of applications in aerospace, automotive, construction, biomedical, energy storage, sensor, and textiles. In this review paper, recent advances of GNPs/epoxy nanocomposites, including their functionalization processes, characterization techniques, production methods, properties, and potential applications, have been comprehensively explained. Furthermore, it attempts to provide a complete framework for researchers by summarizing and evaluating the extensive literature on these nanocomposite materials.

Funder

Erciyes University Scientific Research Unit

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3