An investigation into the performance of composite hat stringers incorporating nanocomposites using a multiscale framework

Author:

Hasan Zeaid1,Chattopadhyay Aditi1,Liu Yingtao1

Affiliation:

1. School for Engineering of Matter, Transport and Energy, Arizona State University, AZ, USA

Abstract

In this paper, an effort has been made to investigate the incorporation of carbon nanotubes in structural composites in order to improve damage characteristics, such as delamination. The nanocomposite material is introduced in the damage-prone regions of complex aerospace stiffener sections; the methodology proposed is an alternative to traditional approaches used to suppress delamination in composites, such as the use of metallic fittings. Numerical simulations are conducted using a multiscale modeling framework. The effective properties of the nancomposites are computed using a micromechanics-based approach and the results are compared with those obtained using a Kalman filter algorithm. The information is then used to analyze the structural response of a hat stringer using detailed finite element models. The stringer is analyzed under different loading conditions and varying levels of defects in the structure. Results obtained indicate that the use of nanocomposites improves the structural performance by improving the initial failure load. It is anticipated that the use of carbon nanotubes during the manufacturing process will help delay the onset of initial damage and damage growth, which can ultimately lead to a more robust structural design with enhanced performance against unique composite failure modes.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3