Electrical, optical, and rheological properties of ozone-treated multiwalled carbon nanotubes–polystyrene nanocomposites

Author:

Ayesh Ayman S1,Ibrahim Sobhy S12,Aljaafari Abdullah A1

Affiliation:

1. Department of Physics, College of Science, King Faisal University, Al Ahsa, Kingdom of Saudi Arabia

2. Physics Department, Faculty of Science, Cairo University, Giza, Egypt

Abstract

The functionalization of multiwalled carbon nanotubes was performed through the treatment of multiwalled carbon nanotubes with ozone using UV-ozone irradiation to improve their dispersion in polystyrene matrix. Multiwalled carbon nanotubes–polystyrene nanocomposites were prepared at different multiwalled carbon nanotubes weight ratios to investigate the effect of multiwalled carbon nanotubes loadings on the electrical, optical, and rheological properties of polystyrene matrix. The obtained results revealed that incorporation of functionalized multiwalled carbon nanotubes into polystyrene improved the electrical, optical, and rheological properties of neat polystyrene which indicated that multiwalled carbon nanotubes were well dispersed in the polymer matrix. Results obtained from DC and AC electrical measurements revealed that the percolation threshold was around 0.8 wt% multiwalled carbon nanotubes and incorporation of 3% multiwalled carbon nanotubes into polystyrene increased polystyrene electrical conductivity up to six orders of magnitude. Besides, increasing of multiwalled carbon nanotubes loadings increased the relative dielectric permittivity, dielectric loss, and loss tangent while decreased the total impedance of polystyrene matrix. Rheological results indicated that incorporation of multiwalled carbon nanotubes into polystyrene elevated the magnitudes of storage modulus and loss modulus up to two orders of magnitude with increasing of multiwalled carbon nanotubes loadings up to 3 wt%. Finally, the addition of multiwalled carbon nanotubes to polystyrene matrix enhanced the UV/visible absorption of polystyrene and decreased the optical energy gap with a total reduction ratio of 5.8% compared to neat polystyrene with increasing multiwalled carbon nanotubes loadings up to 2 wt%.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3