Affiliation:
1. Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin, China
Abstract
In the current study, the low-velocity impact response of hybrid-laminated composites based on the twill woven fabrics was investigated experimentally. The following five different types of carbon–aramid/epoxy hybrid laminates were produced and tested, (a) two types of interply hybrid, (b) two types of sandwich-like interply hybrid, and (c) intraply hybrid. Non-hybrid carbon and aramid twill woven laminates were also tested for comparison. The effects of the hybrid structure on the impact properties such as the peak load, the ductility index, and damage area were discussed. The impact damage resistances of specimens were evaluated by comparing damage images taken from both the impacted and the non-impacted surface. The damage and failure mechanisms were analyzed from the impact damage morphologies using ultrasonic C-scan and three-coordinate measuring device. Under the same impact energies, the interply hybrid laminates with carbon fabric on the impact surface have higher impact damage resistance. It can be concluded that placing of high stiffness carbon fabric at highly stressed regions as reinforcement would result in enhanced properties, and the damage tolerance performance of composites with interply hybrid structure are better than those of other hybrid composites.
Subject
Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献