An experimental investigation on the low-velocity impact response of carbon–aramid/epoxy hybrid composite laminates

Author:

Ying Sun1,Mengyun Tang1,Zhijun Rong1,Baohui Shi1,Li Chen1

Affiliation:

1. Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin, China

Abstract

In the current study, the low-velocity impact response of hybrid-laminated composites based on the twill woven fabrics was investigated experimentally. The following five different types of carbon–aramid/epoxy hybrid laminates were produced and tested, (a) two types of interply hybrid, (b) two types of sandwich-like interply hybrid, and (c) intraply hybrid. Non-hybrid carbon and aramid twill woven laminates were also tested for comparison. The effects of the hybrid structure on the impact properties such as the peak load, the ductility index, and damage area were discussed. The impact damage resistances of specimens were evaluated by comparing damage images taken from both the impacted and the non-impacted surface. The damage and failure mechanisms were analyzed from the impact damage morphologies using ultrasonic C-scan and three-coordinate measuring device. Under the same impact energies, the interply hybrid laminates with carbon fabric on the impact surface have higher impact damage resistance. It can be concluded that placing of high stiffness carbon fabric at highly stressed regions as reinforcement would result in enhanced properties, and the damage tolerance performance of composites with interply hybrid structure are better than those of other hybrid composites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3