Affiliation:
1. Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Pohl Institute of Solid State Physics, Tongji University, China.
2. Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Pohl Institute of Solid State Physics, Tongji University, China,
3. Shanghai Institute of Laser and Plasma, China.
Abstract
Considering its special microstructure and unique properties, silica aerogel was chosen as three-dimensional (3D) nanoporous filler for epoxy resin in this paper. Pure epoxy resin (0 wt%), 0.1 wt%, 1 wt%, 5 wt%, 10 wt%, and 100 wt% (pure silica aerogel) aerogel/epoxy composites were fabricated and then characterized by dynamic mechanical analyzer (DMA) and field emission scanning electron microscope. The results showed that small amount of filler efficiently increased the stiffness of the composites, but the stiffness decreased with the increase of the mass fraction of the aerogel in the composites (composites ratio); the glass transition temperature of the composites substantially increased, compared to pure epoxy resin. Also, the compressive modulus of the composites at glassy state, rubbery state, and hardening state were studied, respectively. At last, the effects which presumably affect the properties of aerogel/epoxy composites were discussed. Anchoring effect and interfacial effect were suggested to explain the thermal—mechanical behaviors of the composites with different composite ratio.
Subject
Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献