A study of the interactions of carbon based fillers in acrylonitrile butadiene rubber matrix for high deformation sensor applications

Author:

Mensah Bismark1ORCID,Yaya Abu1,Onwona-Agyeman Boateng1,Ofori Ralph Abakah1,Dompreh Clive1ORCID

Affiliation:

1. Department of Materials Science and Engineering, CBAS, University of Ghana, Legon, Ghana

Abstract

A strain sensor was prepared by reinforcing acrylonitrile butadiene rubber (NBR)-5 parts per hundred of rubber (phr) carbon black (CBH) separately with small concentration (∼0.1phr) of reduced graphene oxide (GL), multi-walled, and carbon nanotube (NTL) via a combination of conventional solution and solid processing techniques. The interactions and the electronic properties among carbon based fillers NT, CB, G and their synergy effects (NBR-CBH-GL and NBR-CBH-NTL) were investigated by using density functional theory (DFT) modeling approach. The DFT predictions were in correspondence with the experimental results. The optimum design (NBR-CBH-GL) was found to show high curing, mechanical and improved electrical properties. On account of strain sensing performance, NBR-CBH-GL exhibited high gauge factor (GF) ∼105 at 0–40% strain, which was over 900% than NBR-CBH (GF ∼104 at 0–30% strain) and the highest reported so far. This was explained by the breaking of CB networks caused by tight NBR-G structures on straining, leading to high electrical resistance. The NBR-CBH-GL also demonstrated high stability and repeatability in the cyclic loading. In terms of applications, NBR-CBH-GL exhibited high capability for vibration detections and wearable sensing, especially for detection of human bodily motions like speeches, facial deformations, bending, and relaxation of the fingers.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3