Cell structure in steels induced by additive manufacturing

Author:

Wang Xiaobo1

Affiliation:

1. Department of Civil and Mechanical Engineering, Technical University of Denmark, Produktionstorvet, Kgs. Lyngby, Denmark

Abstract

This review discusses the cell structure induced by additive manufacturing (AM) with a focus on stainless steel 316L and maraging steel 18Ni-300 produced by laser powder bed fusion. The microstructural characteristics of AM cell structure are described. The central role of AM cell structure in the process–microstructure–property–performance relationship of AM steels is demonstrated, in which the methodology of modifying AM cells and the strengthening mechanism by AM cells are critically reviewed. The limitations of the current research mainly lie in the reproducibility of microstructures and the solution to the strength-ductility trade-off of AM steels. Finally, suggestions for further studies are presented: to establish a fine-scale process–microstructure–property–performance relationship of AM steels and to print novel composite materials through microstructure design.

Funder

Danmarks Frie Forskningsfond

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microstructure evolution in laser-based powder bed fusion of metals;IOP Conference Series: Materials Science and Engineering;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3