Creep mechanisms and cavitation of AA5052 at intermediate stress and temperature region

Author:

Abedi Fatemeh1,Serajzadeh S.1

Affiliation:

1. Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Creep mechanism and cavitation of AA5052 were studied employing creep experiments at 200–350°C and stresses 15–70 MPa. The microstructural observations were then performed to assess grain growth and formation of cavities. The apparent activation energy was defined in a range of 154–166 kJ/mole. It was found that at higher normalised stress region ([Formula: see text]), the stress exponent was about 7 and at lower stresses it decreased to about 5. Microstructural instability, that is, grain growth, was detected during creep at a temperature of 300°C or higher. This phenomenon affected the strain rate and the governing mechanisms. Microstructure of the sample tested at 300°C revealed that the coalescence of cavities could occur at creep strains higher than 6.5%.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cellular automata simulation of cavity growth during creep of Al–Mg alloy;Journal of Materials Research and Technology;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3