A quantile variant of the expectation–maximization algorithm and its application to parameter estimation with interval data

Author:

Park Chanseok1ORCID

Affiliation:

1. Department of Industrial Engineering, Pusan National University, Republic of Korea

Abstract

The expectation–maximization algorithm is a powerful computational technique for finding the maximum likelihood estimates for parametric models when the data are not fully observed. The expectation–maximization is best suited for situations where the expectation in each E-step and the maximization in each M-step are straightforward. A difficulty with the implementation of the expectation–maximization algorithm is that each E-step requires the integration of the log-likelihood function in closed form. The explicit integration can be avoided by using what is known as the Monte Carlo expectation–maximization algorithm. The Monte Carlo expectation–maximization uses a random sample to estimate the integral at each E-step. But the problem with the Monte Carlo expectation–maximization is that it often converges to the integral quite slowly and the convergence behavior can also be unstable, which causes computational burden. In this paper, we propose what we refer to as the quantile variant of the expectation–maximization algorithm. We prove that the proposed method has an accuracy of [Formula: see text], while the Monte Carlo expectation–maximization method has an accuracy of [Formula: see text]. Thus, the proposed method possesses faster and more stable convergence properties when compared with the Monte Carlo expectation–maximization algorithm. The improved performance is illustrated through the numerical studies. Several practical examples illustrating its use in interval-censored data problems are also provided.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3