Discrete event performance prediction of speculatively parallel temperature-accelerated dynamics

Author:

Zamora Richard J1,Voter Arthur F1,Perez Danny1,Santhi Nandakishore2,Mniszewski Susan M2,Thulasidasan Sunil2,Eidenbenz Stephan J2

Affiliation:

1. Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA

2. Computer, Computational & Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract

Due to its unrivaled ability to predict the dynamical evolution of interacting atoms, molecular dynamics (MD) is a widely used computational method in theoretical chemistry, physics, biology, and engineering. Despite its success, MD is only capable of modeling timescales within several orders of magnitude of thermal vibrations, leaving out many important phenomena that occur at slower rates. The temperature-accelerated dynamics (TAD) method overcomes this limitation by thermally accelerating the state-to-state evolution captured by MD. Due to the algorithmically complex nature of the serial TAD procedure, implementations have yet to improve performance by parallelizing the concurrent exploration of multiple states. Here we utilize a discrete-event-based application simulator to introduce and explore a new speculatively parallel TAD (SpecTAD) method. We investigate the SpecTAD algorithm, without a full-scale implementation, by constructing an application simulator proxy (SpecTADSim). Following this method, we discover that a non-trivial relationship exists between the optimal SpecTAD parameter set and the number of CPU cores available at run-time. Furthermore, we find that a majority of the available SpecTAD boost can be achieved within an existing TAD application using relatively simple algorithm modifications.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advances in Accelerated Molecular Dynamics Methods: Theory and Applications;Comprehensive Computational Chemistry;2024

2. Resource allocation for task-level speculative scientific applications: A proof of concept using Parallel Trajectory Splicing;Parallel Computing;2022-09

3. Machine Learning–enabled Scalable Performance Prediction of Scientific Codes;ACM Transactions on Modeling and Computer Simulation;2021-04-30

4. Accelerated Molecular Dynamics Methods for Long-Time Simulations in Materials;Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile;2021

5. Exploiting model uncertainty to improve the scalability of long-time simulations using Parallel Trajectory Splicing;Modelling and Simulation in Materials Science and Engineering;2020-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3