Affiliation:
1. Engineering and Natural Sciences Faculty, Department of Industrial Engineering, Adana Science and Technology University, Turkey
2. Engineering Faculty, Department of Industrial Engineering, Gaziantep University, Turkey
3. Gaziantep, Turkey
Abstract
A real-world inventory control system, due to its nonlinear, stochastic, time-dependent nature, and the presence of complex interactions between supply chain members, can become quite challenging to optimize and requires a complex model. At this point, the Simulation Optimization (SO) model gains a better understanding of the complex and messy phenomenon of the inventory control of supply chain members. By creating SO models for Distribution Center (DC)s and Suppliers, we wish to present flexible and comprehensible research on the important decision of whether to minimize the differences between total overordering cost and total underordering cost (Model 1) or to minimize the total supply chain cost (Model 2). We also try to point out several important issues: the optimal value of the initial inventory, the reorder point, and the order-up-to level in continuous (s, S) policy for each DC and each Supplier; whether SO models can successfully integrate the supplier selection and continuous (s, S) policy for the supply chain environment; how to apply statistical analysis skills to compare these SO models with a greater level of detail. According to the cost analysis, the total supply chain cost of Model 1 is improved approximately 22% with Model 2. Also, Model 2 is the best one according to quantity-based analysis, order-based analysis, probability-based analysis, and lead-time-based analysis. Model 2 can be successfully applied for the actual situation of the supply chain inventory system and companies can obtain a remarkable amount of saving while increasing their competitive edge.
Subject
Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献