A neural network approach for population synthesis

Author:

Albiston Gregory1,Osman Taha1ORCID,Brown David1

Affiliation:

1. Department of Computer Science, School of Science and Technology, Nottingham Trent University, UK

Abstract

This work explores techniques and metrics applied to the process of population synthesis used in activity-based modeling for traffic and transport simulation. The paper presents a novel population synthesis approach based on applying artificial neural networks (ANNs) and evaluates the approach against techniques derived from iterative proportional fitting (IPF), Bayesian networks, and data sampling methods. The documented research also investigates the appropriateness of goodness-of-fit measures and the need to consider similarity measures in assessing technique effectiveness with a focus on measures derived from Jaccard similarity coefficient. We established that IPF techniques should be preferred when datasets with the required composition are available, targeting few output variables and in relatively large zones of 5% region size. However, in smaller zones with sparser datasets, or inadequate dataset composition, the proposed ANN technique and identified sampling method are favorable. The proposed ANN method shows suitability for the population synthesis problem compared with the examined methods, but further work is required to improve model fitting speed, explore mixture models of multiple ANNs, and apply data reduction techniques to reduce the observation–decision space. The research findings also established that comparing scenarios of varying sizes and variable numbers is challenging when employing specific goodness-of-fit measures. Furthermore, the mentioned similarity measures can reveal concerns regarding inconsistent archetypes and low-quality populations that can remain concealed when using error metrics.

Publisher

SAGE Publications

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3