A robust model for generation and transmission expansion planning with emission constraints

Author:

Ahmadi Abdollah1ORCID,Mavalizadeh Hani2,Esmaeel Nezhad Ali3,Siano Pierluigi4,Shayanfar Heidar Ali5,Hredzak Branislav1

Affiliation:

1. School of Electrical Engineering and Telecommunications, the University of New South Wales (UNSW Australia), Australia

2. Department of Electrical and Biomedical Engineering, University of Vermont, USA

3. Department of Electrical, Electronic, and Information Engineering, University of Bologna, Italy

4. Department of Industrial Engineering, University of Salerno, Italy

5. Centre of Excellence for Power System Automation and Operation, Iran University of Science and Technology, Iran

Abstract

This paper presents the application of information gap decision theory (IGDT) to deal with uncertainties associated with load forecasting in dynamic, environment constrained, coordinated generation and transmission expansion planning. Traditionally, the gaseous emissions are constrained over the whole system. Conventional methods cannot guarantee a practical expansion plan since huge emissions can still occur on some buses in the power system. This paper introduces a per-bus emission limit to avoid extreme emissions in highly populated areas. The effect of nodal emission limits is fully discussed and compared to a conventional method. The model is kept linear using the big M approach to decrease the model computational burden. Reliability is considered by limiting the estimated load not served in each year over the planning horizon. The cost of fuel transportation and fuel limits are considered in order to make the model more realistic and practical. The effectiveness of the proposed model is verified by implementation on Garver 6 bus, IEEE 30 bus, and 118 bus test systems.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3