Knowledge-based and data-driven behavioral modeling techniques in engagement simulation

Author:

Zhu Zhi1ORCID,Wang Tao1,Sarjoughian Hessam2ORCID,Wang Weiping1,Zhao Yuehua3

Affiliation:

1. College of Systems Engineering, National University of Defense Technology, China

2. School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, USA

3. College of Information Management, Nanjing University, China

Abstract

As knowledge and data increase in scale and complexity, it is more difficult to apply these two key assets to achieve optimal effectiveness in engagement simulation. The aim of this study was to investigate the techniques of knowledge and data integration with respect to the development of smart agents to predict accurate behaviors in tactical engagements. To reduce the complexity of combat behavior representation, with respect to the functions, we represented subject matter expert operational knowledge by proposing multiple levels of cascaded hierarchical structure, namely, the function decision tree, to increase the readability and maintainability of the behavioral model. For decision points in a behavioral model, smart agents can be trained based on data samples collected from rounds of constructive simulations which provide validated physical models and tactical principles. As a proof of concept, we constructed a simulation testbed of multi-warhead ballistic missile penetration, which generated 129,600 constructive simulations over a total of 84 h. Thereafter, we selected 5817 data samples (i.e. ~4.5% of the simulations) using an operational metric of total rewards exceeding 100. The data samples are used to train an artificial neural network and then this network is used to develop a deep reinforcement learning agent. The results revealed that the training process iterated nearly 17,000 epochs until the policy loss decreased to an acceptable low value. The smart agent increased the ratio of ballistic missile target hits by 18.96%, a significant increase when compared with the traditional rule-based behavioral model.

Funder

National Defense Pre-Research Foundation of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3