A hybrid ant lion optimizer with improved Nelder–Mead algorithm for structural damage detection by improving weighted trace lasso regularization

Author:

Chen Chengbin1,Yu Ling1ORCID

Affiliation:

1. MOE Key Laboratory of Disaster Forecast and Control in Engineering, School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China

Abstract

Structural damage detection is the kernel technique in deploying structural health monitoring. The structural damage–detection technique using heuristic algorithms has been developed at an astounding pace over the past years. However, some existing structural damage–detection methods are prone to easily fall into the local optimum and to be unstable when they are applied to complex structures. In order to make full use of advantages of heuristic algorithms and overcome abovementioned shortcomings, a hybrid algorithm, which combines the ant lion optimizer with an improved Nelder–Mead algorithm, is proposed to solve the constrained optimization problem of complex structural damage detection. First, an objective function is established for damage identification using structural modal parameters, that is, frequencies and mode shapes. The solution to the objective function is accurately attained by a newly improved weighted trace lasso which can improve the computing performance and stability of procedure and reduce randomness of weighted coefficients. After assessing the computing performance of the proposed hybrid algorithm using three classical mathematical benchmark functions, two structural damage–detection numerical simulations and a laboratory verification are then conducted to fully assess the structural damage–detection capability of the proposed method. Meanwhile, the equivalent element stiffness-reduction model is introduced to estimate the real damage severities of cracks which are created in laboratory structures and to compare with the structural damage–detection results by the proposed method. The illustrated results show that the proposed hybrid algorithm can locate damage and quantify damage severity more accurately and stably with a good robustness to noise.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3