An interpretable machine learning approach for predicting the capacity and failure mode of reinforced concrete columns

Author:

Haggag May1ORCID,Ismail Mohamed K.2ORCID,El-Dakhakhni Wael34ORCID

Affiliation:

1. Department of Construction Engineering, The American University in Cairo, Cairo, Egypt

2. Department of Structural Engineering, Faculty of Engineering, Cairo University, Giza, Egypt

3. Department of Civil Engineering, McMaster University, Hamilton, ON, Canada

4. School of Computational Science & Engineering, McMaster University, Hamilton, ON, Canada

Abstract

During seismic events, reinforced concrete (RC) columns play a crucial role in maintaining buildings’ structural integrity. This motivated engineers and practitioners to search for key parameters that influence the load-carrying capacity and failure mechanisms of such columns. However, the complexity and nonlinearity of seismic effects along with the intricate nature of RC columns as a composite system challenge the capabilities of analytical and empirical approaches to accurately capture the response of RC columns. Subsequently, the present study utilizes Machine Learning (ML) techniques to identify the failure modes and predict the corresponding capacities of RC columns based on both their geometrical and material properties. Decision trees and different ensemble methods were employed to predict both the columns’ failure mode and ultimate capacity. A multivariate dataset consisting of 486 cyclically loaded rectangular and circular columns was used to develop and validate the models. In addition, different embedded variable selection techniques were employed to evaluate the significance of input parameters in predicting the performance of columns. Moreover, partial dependence plots and accumulated local effects were employed to uncover the interrelationships between the input features and the modelled outputs. The developed models yielded an average accuracy of 90% and 95% for predicting the failure mode and ultimate capacity of RC columns, respectively. Given such high accuracy, it can be inferred that, ML techniques have the potential to provide efficient and reliable prediction tools to support seismic design and assessment decisions - mitigating seismic risks and empowering resilience planning in the face of extreme events.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3