Structural seismic responses prediction using the gradient-enhanced hybrid PINN

Author:

Xing Chenxi1,Xu Zidong2,Wang Hao2ORCID

Affiliation:

1. Judicial Big Data Research Center, School of Law, Southeast University, Nanjing, China

2. Key Laboratory of C&PC Structures of Ministry of Education, Southeast University, Nanjing, China

Abstract

To rapidly and effectively assess the bridge seismic-resistant capability, it is essential to conduct efficient predictions of bridge seismic responses. Recently, physics informed neural network (PINN) has made great progress and utilized to solve differential equations in different fields. However, how to increase its accuracy and efficiency still remains an open challenge. In this work, a novel gradient-enhanced Fourth-Order Runge-Kutta PINN (gRK4-PINN), as a powerful hybrid PINN, is utilized to achieve this goal. As for gRK4-PINN, the physical information is not simply embedded into the loss function; instead, the RK4 method and the physical model is intricately integrated with the neural network. In addition, to improve the predictive performance, additional gradient equation is directly embedded in loss function. A large-span continuous girder high speed railway (CGHSR) bridge is adopted as numerical experiment to validate the fidelity of the proposed method. Results reveal that the Mean Absolute Error (MAE) of the predicting seismic responses is relatively small, whose value is below 0.014 in most of the time. These small MAE values indicate that the proposed gRK4-PINN performs well in predicting the seismic responses of the CGHSR bridge.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3