Performance evaluation and FRP strengthening of concrete-filled steel tubular columns subjected to vehicle impact

Author:

Hu Bo12ORCID,Wang Hai-Bo3

Affiliation:

1. College of Civil Engineering, Hefei University of Technology, Hefei, China

2. Anhui Key Laboratory of Civil Engineering Structures and Materials, Hefei University of Technology, Hefei, China

3. Bureau of Water Resources of Jin’an District, Lu’an, China

Abstract

Concrete-filled steel tubular (CFST) columns have been widely used in multi-story and high-rise frame structures. During the service period, they may suffer vehicle impact due to traffic accidents or terrorist attacks. This paper numerically evaluates the performance of CFST columns under vehicle impact and investigates the effects of carbon FRP (CFRP) wrapping arrangements on performance improvement of the columns. Before that, a numerical model was developed to simulate the responses of CFST columns without and with FRP wrapping under vehicle impact and post-impact axial compression, and then calibrated by reported tests. Evaluation results show that the performance of CSFT columns under vehicle impact is divided into five levels, i.e., no repair required, rapid repair required, minor repair needed, major repair needed, and replacement needed. The performance level decreases with the increase in the vehicle weight or speed and increases with the increase in the column diameter or steel tube thickness. The column height has little effects on the performance level. A higher axial load ratio, e.g., 0.5, might reduce the performance level. Besides, a CFST column tends to fail in flexure mode when hit by F800 medium truck, while it may fail in flexure & shear mode when hit by C2500 pickup truck. Investigation results indicate that FRP wrapping with each layer orientation of 90° (i.e., in the longitudinal direction) and 0° (i.e., in the hoop direction) present the best performance improvement for a CFST column possibly undergoing flexure & shear and flexure failure, respectively. The increase of the number of FRP layers effectively improves the performance levels of CFST columns but the excessive demand may be not economical. It is not necessary to employ an FRP wrapping range of 100% for improving the vehicular impact performance level of a CFST column to the expected one.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3