Bayesian-guided operational modal identification of a highway bridge considering non-uniform sampling

Author:

Wang Zhi-Wen12,Liu Jun-Hong2,Ding You-Liang1,Yang Xiao-Mei3ORCID,Zheng Xu4,Yi Ting-Hua4ORCID

Affiliation:

1. Key Laboratory of Concrete and Pre-Stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, China

2. YunJi Intelligent Engineering Co., Shenzhen, China

3. College of Civil Engineering, Fuzhou University, Fuzhou, China

4. School of Civil Engineering, Dalian University of Technology, Dalian, China

Abstract

During the structural health monitoring of bridges, it has been observed that the vibration data collected can sometimes be randomly lost or sampled non-uniformly. This leads to a low signal-to-noise ratio in the spectral functions of the measured data, making it difficult to identify weak modes. To address this issue, a framework for operational modal identification is proposed in this study. It utilizes the fast Bayesian fast Fourier transform (FFT) method to estimate the modal parameters of highway bridges considering the non-uniform monitoring data. The initial frequency parameters for the fast Bayesian FFT approach are automatically determined using the proposed autoregressive (AR) power spectral density (PSD)-guided peak picking method. This overcomes the challenge of capturing initial frequencies related to weakly contributed modes. Additionally, the bandwidth parameter for each mode is determined using the modal assurance criterion (MAC) of the first left singular vectors of PSD matrices. Furthermore, when analyzing non-uniform vibration data, it is recommended to use the non-uniform FFT (NUFFT) for calculating PSD functions in order to improve identification accuracy. The proposed method is validated using acceleration data from both a numerical model and a real-world bridge. The results demonstrate that the identification uncertainty of modal parameters increases with higher non-uniform levels.

Funder

Natural Science Foundation of Liaoning Province

Foundation for High Level Talent Innovation Support Program of Dalian

the Open Project Program of Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3