Deep learning-based minute-scale digital prediction model for temperature induced deflection of a multi-tower double-layer steel truss bridge

Author:

Meng Lingxin12,Sun Bo13ORCID,Dang Yingjie4,Shen Lizhong2,Zhuang Yizhou1

Affiliation:

1. Dept. of Civil Engineering, Zhejiang Univ. of Technology, Hangzhou, China

2. Wenzhou Xinda Trasportation Engineering Testing Co., LTD, Wenzhou, China

3. Yiwu Andi Investigation and Design of Water Conservancy and Hydropower Co., Ltd, Jinhua, China

4. Digital China Rongxin Cloud Technology Service Co., LTD, Xi’an, China

Abstract

Bridge deflection serves as a vital and intuitive index for the evaluation of bridge safety. Temperature load has the greatest influence on the bridge deformation and studies on the temperature-induced deformation prediction of long-span bridge are in limited numbers. A digital prediction model based on deep learning in minute scale is established to study the bridge deflection caused by temperature. The wavelet transform (WT) is adopted to filter the high-frequency signals of the original deflection caused by the related load factors. Three different networks, long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), and Transformer variant, are studied and compared in the prediction process. Two different learning strategies considering different input data are also considered to optimize the prediction performance. The proposed prediction model is applied to the temperature induced deflection prediction of a multi-tower double-layer steel truss bridge. The results show that strategy A, which employs temperature time series data as input, is less effective than strategy B. Incorporating both temperature and deflection data as inputs is essential for predicting temperature-induced deflections. Moreover, the Transformer-variant network generally exhibits superior prediction performance compared to the LSTM and Bi-LSTM. The self-attention mechanism of the Transformer allows it to focus on key historical temperature points, thereby enhancing prediction accuracy.

Funder

Scientific Research Plan Project of Zhejiang Provincial Department of Transportation

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3