Damage identification of bridge structure considering temperature variations based on particle swarm optimization - cuckoo search algorithm

Author:

Huang Minshui1ORCID,Lei Yongzhi1,Cheng Shaoxi1

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan, China

Abstract

Structures are always exposed to environmental conditions such as varying temperatures and noises; as a consequence, the dynamic features of structures are changed accordingly. But the model-based methods, used to detect damage using optimization algorithms to get global optimal solution, are highly sensitive to environmental conditions, experimental noises, or numerical errors. While the mechanisms of optimization algorithms are limited by local optimal solution, their convergences are not always assured. In the study, a model-based damage-identification method considering temperature variations, comprised of particle swarm optimization and cuckoo search, is implemented to detect structural damage. First, to eliminate the influence of environmental temperature, temperature change is considered as a parameter of structural material elastic modulus. A function relationship is established between environmental temperature and the material elastic modulus, and an objective function composed of natural frequency, mode shape and modal strain energy with different weight coefficients is constructed. Second, the hybrid optimization algorithm, a combination of particle swarm optimization and cuckoo search, is proposed. Third, to solve the problem of optimization algorithm convergence, the optimization performance of the hybrid optimization algorithm is validated by utilizing four benchmark functions, and it is found that the performance of the hybrid optimization algorithm is the best. In order to test the performance of the three algorithms in damage identification, a numerical simply supported beam is adopted. The results show that the hybrid optimization algorithm can identify the damage location and severity under four different damage cases without considering temperature variations and two cases considering temperature variations. Finally, the hybrid optimization algorithm is introduced to test the damage-identification performance of I-40 Bridge, an actual steel–concrete composite bridge under temperature variations, whose results show that the hybrid optimization algorithm can preferably distinguish between real damages and temperature effects (temperature gradient included); its good robustness and engineering applicability are validated.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3