Wind tunnel tests on the aerodynamic characteristics of vehicles on highway bridges

Author:

He Xuhui1ORCID,Xue Fanrong1,Zou Yunfeng1ORCID,Chen Suren2,Han Yan3,Du Bing4,Xu Xiangdong4,Ma Baihu5

Affiliation:

1. School of Civil Engineering, Central South University, Changsha, P.R. China

2. Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA

3. School of Civil Engineering, Changsha University of Science and Technology, Changsha, P.R. China

4. Guizhou Transportation Planning Survey and Design Academe Co., Ltd., Guiyang, P.R. China

5. Yingyun Highway Administration Bureau of Guizhou Province, Guiyang, P.R. China

Abstract

Accurately quantifying the aerodynamic forces acting on vehicles and long-span bridges is critical for assessing the safety of moving vehicles on bridges which are subjected to strong wind. It is necessary to consider the aerodynamic interference between vehicles and the bridge, especially for this with the bluff body section and wind barriers. However, very few investigations have been carried out to find aerodynamic coefficients of vehicles on a bridge with the bluff body section and considering the effect of wind barrier. This article therefore carried out wind tunnel tests to determine aerodynamic coefficients of container truck on a bridge with a π-cross section and wind barriers. The influence of vehicle position in different road lanes of the bridge deck and the aerodynamic interference between vehicles on the aerodynamic characteristics of the vehicle and the bridge are investigated. Different heights and ventilation ratios of wind barrier are taken into consideration to examine variations of aerodynamic coefficients with different wind barriers. Furthermore, the change mechanism in the aerodynamic coefficients of the vehicles is observed by analyzing the wind pressure distribution on the surface of the vehicles. The test results show that the different lane locations of the vehicle affect the aerodynamic coefficients significantly, as well as the aerodynamic interference between vehicles with transverse arrangement or longitudinal arrangement, especially for the side force coefficient. The existence of wind barrier reduces the side force coefficients of the vehicle remarkably. Such effects also vary with the ventilation ratio and height of wind barrier.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3