Advanced image stitching method and evaluation for underwater structure inspection utilizing planar array cameras

Author:

Hou Shitong123ORCID,Wang Yuxuan13,Wu Gang13ORCID,Wu Tao13,Wang Shunyao13,Jiang Hejun2,Fan Xiao4,Zhang Yujie5

Affiliation:

1. School of Civil Engineering, Southeast University, Nanjing, China

2. The Science and Technology on Near-Surface Detection Laboratory, Wuxi, China

3. National and Local Joint Engineering Research Center for Intelligent Construction and Maintenance, Nanjing, China

4. China Railway Construction Suzhou Design and Research Institute Co., Ltd, Suzhou, China

5. ITS Branch, ZheJiang Communications Investment Group Co., Ltd, Hangzhou, China

Abstract

The inspection of underwater structural health is crucial for comprehensive bridge health assessments. In underwater structure imaging, traditional methods include single-camera and binocular camera inspection. However, due to water turbidity and long working distances with a small field-of-view, obtaining clear and high-quality detection images with these methods takes much work. To address this problem, this paper presents a method for planar array image stitching based on Harris corner point extraction, utilizing the advantages of planar array cameras characterized by short working distances and wide field-of-view. The core contribution of this paper is the introduction of an innovative image sequence stitching algorithm utilizing Harris corner point extraction and the combination of the first proposed planar array cameras with the image sequence stitching algorithm, which solves the problem of long distance and small field-of-view during the underwater inspection. The image stitching method involves calibrating camera parameters with a checkerboard and stitching underwater images from planar array cameras to reveal underwater structural features. Furthermore, five quantitative evaluation metrics and the method for calculating the field-of-view loss rate are presented to evaluate and analyze the stitched images. A series of experiments were performed on concrete surfaces, aquatic and underwater, with a total field-of-view of the underwater image after stitching of 358.86 mm × 319.24 mm at a working distance of 160 mm. Five evaluation methods were used to quantitatively evaluate the quality of the stitched images and calculate the field-of-view loss rate of the images. The results indicate that the proposed method improves the ability to inspect underwater. The stitched images achieve notable metrics: an entropy of approximately 6.7, an average gradient of about 1.7, a spatial frequency of around 3.5, an edge strength of about 17, mutual information of approximately 1.2, and a field-of-view loss rate of <0.1, facilitating more effective underwater structure inspection.

Funder

Foundation of the Science and Technology on Near-Surface Detection Laboratory

Jiangsu Provincial Key R&D Program

National Natural Science Foundation of China

Start-up Research Fund of Southeast University

Natural Science Foundation of Jiangsu Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3