Feasibility of studying 460 MPa high-strength steel affected by strain aging with acoustic emission method

Author:

Yang Yiting1ORCID,Wang Yan1,Li Kehao1

Affiliation:

1. School of Civil Engineering, Qingdao University of Technology, Qingdao, Shandong Province, China

Abstract

Strain aging significantly influences the behavior of partially damaged structural steel. The effects of strain aging can be determined based on mechanical experiments, but the sampling process causes further damage to the structures. To explore the possibility of using nondestructive testing (NDT) technology to distinguish the strain aging effects on steel materials, this study investigates the characteristics of acoustic emission (AE) signals for high-strength steel (HSS) affected by strain aging. First, different strain aging effects were applied to 460 MPa HSS specimens. Second, pencil lead break (PLB) tests were performed on the specimens with strain aging, and the generated AE signals were recorded. Finally, tensile tests were conducted, that the strain aging effects on mechanical behavior were determined. The obtained AE signals were compared by extracting the AE parameters and analyzed in the frequency and time-frequency domains with a fast Fourier transform (FFT) and a wavelet transform (WT), respectively. The study shows that the strain aging effects change the characteristics of the AE signals. Compared to the prestrain, the aging time has a more pronounced impact on the AE behaviors. This research proposes a possible NDT method to determine the effects of strain aging on steel materials. Experimental data are provided to detect the degree of partial damage to 460 MPa HSS owing to strain aging using the AE method.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

project of shandong province higher educational science and technology program

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3