The development of a prototype footbridge composed of biological self-healing and ultra-high-performance concretes

Author:

Jakubovskis Ronaldas1ORCID,Sokolov Aleksandr1

Affiliation:

1. Laboratory of Innovative Building Structures, Vilnius Gediminas Technical University (VilniusTech), Vilnius, Lithuania

Abstract

Developments in concrete technologies have allowed engineers to design lightweight, slender, and aesthetically attractive structures. The application of new concrete types in real projects, however, is uncommon. The lack of regulation, uncertainty in material performance, and the absence of successfully implemented projects hinders the use of modern concretes in everyday design projects. The present paper examines the application of two specific concrete types in a prototype footbridge: ultra-high-performance concrete (UHPC), and biological self-healing concrete (BSHC). The material properties of UHPC were selected and tailored specifically for the prototype structure, applying the principles of performance-based design. To evaluate the efficiency of self-healing under real environmental conditions, BSHC beams were designed as a structural part of the bridge. The step-by step presentation of the bridge development demonstrates the specifics in material design and a structural analysis of the prototype structure. The prototype structure serves as demonstrative example of the use of BSH and UHP concretes, encouraging engineers towards the wider application of advanced materials in construction projects.

Funder

Lietuvos Mokslo Taryba

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3