Numerical and experimental analysis in seismic performance of post-earthquake reinforced concrete frame retrofitted with ECC

Author:

Ren Hongmei123,Zhang Fuwen4,Mao Chenxi1,Fan Qiaoqiao5,Lu Zheng56ORCID

Affiliation:

1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin, China

2. Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin, China

3. School of Digital Construction, Shanghai Urban Construction Vocational College, Shanghai, China

4. Shanghai Key Laboratory of Engineering Structure Safety, Shanghai Research Institute of Building Sciences Co., Ltd, Shanghai, China

5. Department of Disaster Mitigation for Structures, Tongji University, Shanghai, China

6. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China

Abstract

In order to further demonstrate the effectiveness of engineered cementitious composites (ECC) in repairing and strengthening the post-earthquake damaged structure, at the overall structural level, experimental and numerical comparative analysis of structural seismic performance before and after “retrofitted with ECC” is conducted in this paper. A 1:2-scale reinforced concrete frame is tested under cyclic reversed loading and a new ECC material’s constitutive model is proposed in this paper for improving the accuracy and feasibility of numerical modelling. The modelling method and newly proposed constitutive model of ECC has been demonstrated to be workable and accurate. Based on numerical and experimental data, the increase of the average yielding displacement after the installation of ECC is relatively significant (80.4% to 156.4%), and the repairing method using ECC in post-earthquake damaged RC frame can restore and even exceed the original frame’s load bearing capacity. Comparing the ultimate inter-story drift ratio, the ratio with ECC is about 31.0% higher, indicating that ECC has good deformation capacity and the usage of ECC is indeed an effective method to improve deformation capacity in repairing and strengthening post-earthquake damaged structures. The results confirm the effectiveness and superiority of retrofitting ECC in post-earthquake damaged structures for the reason that the repaired structure can reach the same level of seismic performance as the original structure. The “repairable” characteristic can be used in the design of earthquake resilient structures.

Funder

Natural Science Foundation of Shanghai Municipality

Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3