A monitoring-mining-modeling system and its application to the temperature status of the Xiluodu arch dam

Author:

Hu Yu1,Liang Guohe1,Li Qingbin1,Zuo Zheng12

Affiliation:

1. State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, P.R. China

2. China Power Complete Equipment Co., Ltd., Beijing, P.R. China

Abstract

Knowledge of the concrete temperature of a dam is necessary for the implementation of improved construction methodologies. A monitoring-mining-modeling system is proposed in this article to study the thermal state of a super high arch dam in China. The monitoring-mining-modeling system includes an in situ monitoring network setup, data mining methods, and numerical finite element analysis. Two engineering cases are surveyed in detail using monitoring-mining-modeling system. The first case is the long-term temperature rise phenomenon, whose cause is determined from the data mining result, and the numerical modeling of the external boundary condition is improved using the result. The modeling result then shows that the effect of the TRP is also a dangerous factor for the deformation and stress state of the dam. The second case is the performance of cooling pipes. The energy absorption capability of the cooling pipes is revealed by the data mining result, as well as the performance difference between high-density polyethylene and iron pipes. The numerical modeling result shows good agreement with the monitored result, which demonstrates the closed-loop validity of the monitoring-mining-modeling system.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3