Interfacial stresses in reinforced concrete cantilever members strengthened with fibre-reinforced polymer laminates

Author:

He Xue-jun1,Zhou Chao-Yang1,Wang Yi2ORCID

Affiliation:

1. School of Civil Engineering, Central South University, Changsha, China

2. Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

Abstract

Fibre-reinforced polymers have been increasingly used to strengthen reinforced concrete structures. However, premature brittle debonding failures may occur at the ends of externally bonded fibre-reinforced polymer laminates due to interfacial stress concentrations caused by stiffness imbalances. Although many studies exist on fibre-reinforced polymer-strengthened simply supported beams and slabs, the interfacial stress distributions in fibre-reinforced polymer-strengthened cantilever members are very different from those in simply supported members. Based on the assumptions of linear elasticity, deformation compatibility and static equilibrium conditions, the interfacial stresses in fibre-reinforced polymer-strengthened reinforced concrete cantilever members under arbitrary linear distributed loads were analysed. In particular, closed-form solutions were obtained to calculate the interfacial stresses under either a uniformly distributed load or a single concentrated load located at the overhanging end of the cantilever member. Existing test results on cantilever slabs strengthened by carbon fibre–reinforced polymer sheets were used to verify the model. According to the parametric analysis, the maximum interfacial stresses can be reduced by decreasing the fibre-reinforced polymer thickness, increasing the fibre-reinforced polymer bonding length and increasing the adhesive layer thickness, and by using less rigid fibre-reinforced polymer laminates with high tensile strengths. These results are useful for engineers seeking to optimize strengthening design parameters and implement reliable debonding prevention measures.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Hunan Provincial Science and Technology Department

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3