Current Trends in Multidrug Optimization: An Alley of Future Successful Treatment of Complex Disorders

Author:

Weiss Andrea1,Nowak-Sliwinska Patrycja2

Affiliation:

1. Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

2. School of Pharmaceutical Sciences, University of Geneva (UNIGE), Geneva, Switzerland

Abstract

The identification of effective and long-lasting cancer therapies still remains elusive, partially due to patient and tumor heterogeneity, acquired drug resistance, and single-drug dose-limiting toxicities. The use of drug combinations may help to overcome some limitations of current cancer therapies by challenging the robustness and redundancy of biological processes. However, effective drug combination optimization requires the careful consideration of numerous parameters. The complexity of this optimization problem is clearly nontrivial and likely requires the assistance of advanced heuristic optimization techniques. In the current review, we discuss the application of optimization techniques for the identification of optimal drug combinations. More specifically, we focus on the application of phenotype-based screening approaches in the field of cancer therapy. These methods are divided into three categories: (1) modeling methods, (2) model-free approaches based on biological search algorithms, and (3) merged approaches, particularly phenotypically driven network biology methods and computation network models relying on phenotypic data. In addition to a brief description of each approach, we include a critical discussion of the advantages and disadvantages of each method, with a strong focus on the limitations and considerations needed to successfully apply such methods in biological research.

Funder

European Research Council

Dutch Cancer Society

Publisher

Elsevier BV

Subject

Medical Laboratory Technology,Computer Science Applications

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3