GP5 regulates epithelial–mesenchymal transition in breast cancer via the PI3K/AKT signaling pathway

Author:

Xiang Kui1ORCID,Yanshan Hua2,Chunmei Zhao1,Minmin Guo1,Yan Wang1,Xiaojia Yi1

Affiliation:

1. Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China

2. Department of Pathology, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Yunnan Cancer Hospital, Kunming 650118, China

Abstract

Recent evidences have shown that glycoprotein V (GP5) protein, which is initially considered as an important adhesion molecule unique to the megakaryocyte line, was also specifically expressed in malignant human breast epithelial cells. However, its expression level and function are not clear. This study aimed to reveal the abnormal expression of GP5 in breast cancer (BC), research the associations between the GP5 abnormal expression and BC progression, and explore the molecular mechanism of GP5 in BC. Immunohistochemistry, Western blot (WB), and quantitative reverse transcription–polymerase chain reaction (RT-PCR) assays were used to determine the expression patterns of GP5 in BC tissues and cells. The expression profiles of GP5 in the Cancer Genome Atlas databases were analyzed by UALCAN. The GP5 knockdown and over-expression BC cell lines were constructed and confirmed by RT-PCR and WB. Transcriptome sequencing and KEGG database were performed to screen cellular processes and signal pathways. Phosphatidylinositol 3-kinase (PI3K)/AKT pathway was verified by RT-qPCR, and epithelial–mesenchymal transition (EMT) was confirmed by WB. The results indicated GP5 was highly expressed in BC tissues and might play an important role as a cancer-promoting gene in BC. The high expression of GP5 was significantly associated with higher nuclear grade, higher TNM stage, and human epidermal growth factor receptor 2 (HER2) negativity. GP5 may promote the proliferation, invasion, and metastasis of BC cells by activating PI3K/AKT signaling pathway to up-regulate the EMT. This study provides a new idea that GP5 was expected to become a potential molecular target for early BC clinic diagnosis and treatment.

Funder

Applied Fundamental Research Joint Program of Science & Technology Department of Yunnan Province and Kunming Medical University

Yunnan Provincial Department of Education Science Research Fund Project

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3