A Mechanism for Both Capacitative Ca2+ Entry and Excitation-Contraction Coupled Ca2+ Release by the Sarcoplasmic Reticulum of Skeletal Muscle Cells

Author:

Islam Mohammad Naimul1,Narayanan Bisni1,Ochs Raymond S.1

Affiliation:

1. Department of Pharmaceutical Sciences, School of Pharmacy, St. John's University, Jamaica, New York 11439

Abstract

We have previously established that L6 skeletal muscle cell cultures display capacitative calcium entry (CCE), a phenomenon established with other cells in which Ca2+ uptake from outside cells increases when the endoplasmic reticulum (sarcoplasmic reticulum in muscle, or SR) store is decreased. Evidence for CCE rested on the use of thapsigargin (Tg), an inhibitor of the SR CaATPase and consequently transport of Ca2+ from cytosol to SR, and measurements of cytosolic Ca2+. When Ca2+ is added to Ca2+-free cells in the presence of Tg, the measured cytosolic Ca2+ rises. This has been universally interpreted to mean that as SR Ca2+ is depleted, exogenous Ca2+ crosses the plasma membrane, but accumulates in the cytosol due to CaATPase inhibition. Our goal in the present study was to examine CCE in more detail by measuring Ca2+ in both the SR lumen and the cytosol using established fluorescent dye techniques for both. Surprisingly, direct measurement of SR Ca2+ in the presence of Tg showed an increase in luminal Ca2+ concentration in response to added exogenous Ca2+. While we were able to reproduce the conventional demonstration of CCE—an increase of Ca2+ in the cytosol in the presence of thapsigargin—we found that this process was inhibited by the prior addition of ryanodine (Ry), which inhibits the SR Ca2+ release channel, the ryanodine receptor (RyR). This was also unexpected if Ca2+ enters the cytosol first. When Ca2+ was added prior to Ry, the later was unable to exert any inhibition. This implies a competitive interaction between Ca2+ and Ry at the RyR. In addition, we found a further paradox: we had previously found Ry to be an uncompetitive inhibitor of Ca2+ transport through the RyR during excitation-contraction coupling. We also found here that high concentrations of Ca2+ inhibited its own uptake, a known feature of the RyR. We confirmed that Ca2+ enters the cells through the dihydropyridine receptor (DHPR, also known as the L-channel) by demonstrating inhibition by diltiazem. A previous suggestion to the contrary had used Mn2+ in place of direct Ca2+ measurements; we showed that Mn2+ was not inhibited by diltiazem and was not capacitative, and thus not an appropriate probe of Ca2+ flow in muscle cells. Our findings are entirely explained by a new model whereby Ca2+ enters the SR from the extracellular space directly through a combined channel formed from the DHPR and the RyR. These are known to be in close proximity in skeletal muscle. Ca2+ subsequently appears in the cytosol by egress through a separate, unoccupied RyR, explaining Ry inhibition. We suggest that upon excitation, the DHPR, in response to the electrical field of the plasma membrane, shifts to an erstwhile-unoccupied receptor, and Ca2+ is released from the now open RyR to trigger contraction. We discuss how this model also resolves existing paradoxes in the literature, and its implications for other cell types.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3