Inflation with carbon monoxide in rat donor lung during cold ischemia phase ameliorates graft injury

Author:

Meng Chao12,Ma Liangjuan3,Liu Jinfeng12,Cui Xiaoguang12,Liu Rongfang12,Xing Jingchun12,Zhou Huacheng124

Affiliation:

1. Department of Anesthesiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China; 150001, China

2. Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150001, China

3. Department of Dermatology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China

4. Department of Anesthesiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China

Abstract

Carbon monoxide (CO) attenuates lung ischemia reperfusion injury (IRI) via inhalation, and as an additive dissolved in flush/preservation solution. This study observed the effects of lung inflation with CO on lung graft function in the setting of cold ischemia. Donor lungs were inflated with 40% oxygen + 60% nitrogen (control group) or with 500 ppm CO + 40% oxygen + nitrogen (CO group) during the cold ischemia phase and were kept at 4℃ for 180 min. Recipients were sacrificed by exsanguinations at 180 min after reperfusion. Rats in the sham group had no transplantation and were performed as the recipients. Compared with the sham group, the oxygenation determined by blood gas analysis and the pressure–volume curves of the lung grafts decreased significantly, while the wet weight/dry weight (W/D) ratio, inflammatory reaction, oxidative stress, and cell apoptosis increased markedly ( P < 0.05). However, compared to the control group, CO treatment improved the oxygenation (381 ± 58 vs. 308 ± 78 mm Hg) and the pressure–volume curves (15.8 ± 2.4 vs. 11.6 ± 1.7 mL/kg) ( P < 0.05). The W/D ratio (4.6 ± 0.6) and the serum levels of interleukin-8 (279 ± 46 pg/mL) and tumor necrosis factor-α (377 ± 59 pg/mL) in the CO group decreased significantly compared to the control group (5.8 ± 0.8, 456 ± 63 pg/mL, and 520 ± 91 pg/mL) ( P < 0.05). In addition, CO inflation also significantly decreased malondialdehyde activity and apoptotic cells in grafts, and increased the superoxide dismutase content. Briefly, CO inflation in donor lungs in the setting of cold ischemia attenuated lung IRI and improved the graft function compared with oxygen.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3