Developing a SARS-CoV-2 main protease binding prediction random forest model for drug repurposing for COVID-19 treatment

Author:

Liu Jie1ORCID,Xu Liang1,Guo Wenjing1ORCID,Li Zoe1,Khan Md Kamrul Hasan1ORCID,Ge Weigong1,Patterson Tucker A1,Hong Huixiao1ORCID

Affiliation:

1. National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR 72079, USA

Abstract

The coronavirus disease 2019 (COVID-19) global pandemic resulted in millions of people becoming infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and close to seven million deaths worldwide. It is essential to further explore and design effective COVID-19 treatment drugs that target the main protease of SARS-CoV-2, a major target for COVID-19 drugs. In this study, machine learning was applied for predicting the SARS-CoV-2 main protease binding of Food and Drug Administration (FDA)-approved drugs to assist in the identification of potential repurposing candidates for COVID-19 treatment. Ligands bound to the SARS-CoV-2 main protease in the Protein Data Bank and compounds experimentally tested in SARS-CoV-2 main protease binding assays in the literature were curated. These chemicals were divided into training (516 chemicals) and testing (360 chemicals) data sets. To identify SARS-CoV-2 main protease binders as potential candidates for repurposing to treat COVID-19, 1188 FDA-approved drugs from the Liver Toxicity Knowledge Base were obtained. A random forest algorithm was used for constructing predictive models based on molecular descriptors calculated using Mold2 software. Model performance was evaluated using 100 iterations of fivefold cross-validations which resulted in 78.8% balanced accuracy. The random forest model that was constructed from the whole training dataset was used to predict SARS-CoV-2 main protease binding on the testing set and the FDA-approved drugs. Model applicability domain and prediction confidence on drugs predicted as the main protease binders discovered 10 FDA-approved drugs as potential candidates for repurposing to treat COVID-19. Our results demonstrate that machine learning is an efficient method for drug repurposing and, thus, may accelerate drug development targeting SARS-CoV-2.

Publisher

Frontiers Media SA

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3