Erythropoietin: Physiology and Pharmacology Update

Author:

Fisher James W.1

Affiliation:

1. Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112–2699

Abstract

This minireview is an update of a 1997 review on erythropoletin (EPO) in this journal (1). EPO is a 30,400-dalton glycoprotein that regulates red cell production. In the human, EPO is produced by peritubular cells in the kidneys of the adult and in hepatocytes in the fetus. Small amounts of extra-renal EPO are produced by the liver in adult human subjects. EPO binds to an erythroid progenitor cell surface receptor that includes a p66 chain, and, when activated, the p66 protein becomes dimerized. EPO receptor activation induces a JAK2 tyrosine kinase, which leads to tyrosine phosphorylation of the EPO receptor and several proteins. EPO receptor binding leads to intracellular activation of the Ras/mitogen-activated kinase pathway, which is involved with cell proliferation, phosphatidylinositol 3-kinase, and STATS 1, 3, 5A, and 5B transcriptional factors. EPO acts primarily to rescue erythroid cells from apoptosis (programmed cell death) to increase their survival. EPO acts synergistically with several growth factors (SCF, GM-CSF, 1L-3, and IGF-1) to cause maturation and proliferation of erythroid progenitor cells (primarily colony-forming unit-E). Oxygen-dependent regulation of EPO gene expression is postulated to be controlled by a hypoxia-inducible transcription factor (HIF-1α). Hypoxia-inducible EPO production is controlled by a 50-bp hypoxia-inducible enhancer that is approximately 120 bp 3' to the polyadenylation site. Hypoxia signal transduction pathways involve kinases A and C, phospholipase A2, and transcription factors ATF-1 and CREB-1. A model has been proposed for adenosine activation of EPO production that involves protein kinases A and C and the phospholipase A2 pathway. Other effects of EPO include a hematocrit-independent, vasoconstriction-dependent hypertension, increased endothelin production, upregulation of tissue renin, change in vascular tissue prostaglandins production, stimulation of angiogenesis, and stimulation of endothelial and vascular smooth muscle cell proliferation. Recombinant human EPO (rHuEPO) is currently being used to treat patients with anemias associated with chronic renal failure, AIDS patients with anemia due to treatment with zidovudine, nonmyeloid malignancies in patients treated with chemotherapeutic agents, perioperative surgical patients, and autologous blood donation. A novel erythropolesis-stimulating factor (NESP, darbepoetin) has been synthesized and when compared with rHuEPO, NESP has a higher carbohydrate content (52% vs 40%), a longer plasma half-life, the amino acid sequence differs from that of native human EPO at five positions, and has been reported to maintain hemoglobin levels just as effectively in patients with chronic renal failure as rHuEPO at less frequent dosing. The use of rHuEPO and darbepoetin to enhance athletic performance is officially banned by most sports-governing bodies because the excessive erythrocytosis can lead to increased thrombogenicity and can cause deep vein, coronary, and cerebral thromboses.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3