Renal impairment induced by prenatal exposure to angiotensin II in male rat offspring

Author:

Svitok Pavel1,Okuliarova Monika1,Varga Ivan2ORCID,Zeman Michal1ORCID

Affiliation:

1. Department of Animal Physiology & Ethology, Faculty of Natural Sciences, Comenius University, Bratislava 841 04, Slovak Republic

2. Institute of Histology & Embryology, Faculty of Medicine, Comenius University, Bratislava 813 72, Slovak Republic

Abstract

Suboptimal conditions during prenatal ontogeny can impair development of several physiological systems and result in cardiometabolic diseases in adulthood. The kidney has been identified as one of the most sensitive organs for developmental programming, but underlying mechanisms are not fully understood. Therefore, in our study we explored the consequences of prenatally increased angiotensin II (Ang II) on the structural development of the kidney and its damage by infiltrated immune cells under normal diet and after an increased salt intake, as a second insult representing a lifestyle factor in humans. Female rats were implanted with osmotic mini-pumps continuously releasing Ang II of dose 2 µg/kg/h during last two weeks of pregnancy, whereas control females were sham operated. Immunohistological and ultrastructural evaluations of the kidneys and their infiltration with immune cells were performed in mature male progeny kept either on a standard or increased salt (2% NaCl) diet. Glomerular volume decreased and the cortical tubulointerstitial injury increased in the offspring prenatally exposed to Ang II with no additional effect of increased salt. Ultrastructural examination demonstrated degenerative changes in proximal tubules, mainly fewer and shorter microvilli in the brush border, enlarged mitochondria, and an increased number of lysosomes in the epithelial cells in the progeny prenatally exposed to Ang II. Moreover, the treatment resulted in increased infiltration of T-cells and macrophages in the renal cortex compared to controls. These changes paralleled with reduced numbers of cytotoxic T-cells in circulation and higher oxidative burst of neutrophils in the progeny of Ang II-treated mothers compared to controls. Altogether, results suggest that prenatally increased Ang II promoted infiltration of immune cells in the kidney and subsequent oxidative stress, which induced a damage of renal glomerular and tubular system entailing negative consequences on the cardiovascular system. Impact statement Suboptimal prenatal conditions can contribute to development of cardiovascular diseases and an altered renin-angiotensin-aldosterone system (RAAS) can be involved in the process. In our study, increased angiotensin II in pregnant female rats resulted in renal cortical interstitial damage, and renal ultrastructural changes in the glomeruli, the brush border of proximal tubules and mitochondria in mature male offspring. The treatment promoted infiltration of T cells and macrophages in the kidneys and primed an oxidative burst of circulating neutrophils, indicating a pro-inflammatory state in the progeny of angiotensin II-treated mothers. Deregulated RAAS of mothers is involved in developmental programming of hypertension in adult male offspring via damaging kidney morphology and function. These findings suggest that preventing the activation of RAAS and oxidative stress during perinatal development might protect against hypertension development in adult male progeny.

Funder

Agentúra na Podporu Výskumu a Vývoja

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3