Release of Cytokines by Human Nasal Epithelial Cells and Peripheral Blood Mononuclear Cells Infected with Mycoplasma pneumoniae

Author:

Kazachkov Mikhail Y.1,Hu P.C.2,Carson Johnny L.2,Murphy Paula C.2,Henderson Frederick W.2,Noah Terry L.2

Affiliation:

1. Department of Pediatrics, Maimonides Medical Center, Brooklyn, New York

2. Department of Pediatrics, The University of North Carolina, Chapel Hill, North Carolina 27599-7220

Abstract

Mycoplasma pneumoniae (Mp) infection is associated with asthma exacerbation in children. We hypothesized that Mp infection may cause airway inflammation by inducing the release of cytokines by respiratory epithelial cells. The levels of chemokines interleukin-8 (IL-8) and released upon activation, normal t cell expressed and secreted (RANTES) released by nasal epithelial cell (NEC) cultures established from asthmatic and nonasthmatic children were measured by ELISA at 4, 24, 48, and 72 hr after cells were inoculated with Mp, and were compared with baseline release of these factors. The presence of MP on apical membranes of NEC after infection was confirmed by transmission electron microscopy, and adherence was shown to be inhibited by erythromycin. Mp infection did not alter NEC release of IL-8 or RANTES at any time point. In contrast, tumor necrosis factor α (TNF-α) stimulated increased IL-8 at all time points, and respiratory syncytial virus (RSV) infection stimulated RANTES release at 48 and 72 hr by NEC. These results were not significantly different between NEC from asthmatic and nonasthmatic children. As a comparison, peripheral blood mononuclear cells from normal human volunteers were also incubated with Mp and had significantly increased release of IL-2, IL-6, and TNF-α. We conclude that Mp, unlike viral pathogens such as RSV, is unlikely to directly stimulate early airway surface cytokine responses via mechanisms involving epithelial cells. We speculate that the chronic presence of mononuclear cells at the airway surface of asthmatics provides a target for Mp-triggered cytokine production.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3