Vitamin B12 sources and microbial interaction

Author:

Watanabe Fumio1,Bito Tomohiro1

Affiliation:

1. Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan

Abstract

Vitamin B12 is synthesized only by certain bacteria and archaeon, but not by plants. The synthesized vitamin B12 is transferred and accumulates in animal tissues, which can occur in certain plant and mushroom species through microbial interaction. In particular, the meat and milk of herbivorous ruminant animals (e.g. cattle and sheep) are good sources of vitamin B12 for humans. Ruminants acquire vitamin B12, which is considered an essential nutrient, through a symbiotic relationship with the bacteria present in their stomachs. In aquatic environments, most phytoplankton acquire vitamin B12 through a symbiotic relationship with bacteria, and they become food for larval fish and bivalves. Edible plants and mushrooms rarely contain a considerable amount of vitamin B12, mainly due to concomitant bacteria in soil and/or their aerial surfaces. Thus, humans acquire vitamin B12 formed by microbial interaction via mainly ruminants and fish (or shellfish) as food sources. In this review, up-to-date information on vitamin B12 sources and bioavailability are also discussed. Impact statement To prevent vitamin B12 (B12) deficiency in high-risk populations such as vegetarians and elderly subjects, it is necessary to identify foods that contain high levels of B12. B12 is synthesized by only certain bacteria and archaeon, but not by plants or animals. The synthesized B12 is transferred and accumulated in animal tissues, even in certain plant tissues via microbial interaction. Meats and milks of herbivorous ruminant animals are good sources of B12 for humans. Ruminants acquire the essential B12 through a symbiotic relationship with bacteria inside the body. Thus, we also depend on B12-producing bacteria located in ruminant stomachs. While edible plants and mushrooms rarely contain a considerable amount of B12, mainly due to concomitant bacteria in soil and/or their aerial surfaces. In this mini-review, we described up-to-date information on B12 sources and bioavailability with reference to the interaction of microbes as B12-producers.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3