Affiliation:
1. Key Laboratory of Contemporary Design and Integrated Manufacturing Technology (Northwestern Polytechnical University), Ministry of Education, Xi’an, People’s Republic of China
Abstract
The material removal process of a flexible workpiece has a great effect on the stability limits and chatter-free machining time, as the sequence of material removal can be altered to obtain a better workpiece dynamic behaviour. Therefore, the uncut material can be better designed to get chatter-free machining conditions and a shorter machining time. With this as the objective, a material removal process optimization method is presented to design the uncut material distribution. Different from existing methods, the presented approach begins from the last machining step, the maximum stable cutting depth is calculated, and the removed material is virtually added to the design model. Therefore, beginning from the design part, the material is virtually added to the part and the stock model of the part is finally obtained. Based on this approach, the optimized uncut material can provide support for the part in the semi-finish or finish machining processes, and the machining process is stable. Optimization results show that while machining plate-like structures, step removal methods can be used and the arc or triangle shape machining allowance can be used to get better machining results. Cutting experiments were carried out to show the effectiveness of the presented approaches.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献