Machine learning-based prediction of statically equivalent seismic forces in pin-supported cylindrical reticulated shells

Author:

Takiuchi Yuji1ORCID,Sakai Shizuki1,Nakazawa Shoji1

Affiliation:

1. Department of Architecture and Civil Engineering, Toyohashi University of Technology, Toyohashi, Japan

Abstract

Reticulated shells exhibit complex vibrations during earthquakes, encompassing components in horizontal and vertical directions, and multiple vibration modes occur. In particular, single-layer reticulated shells with a small depth relative to their span exhibit many vibration modes, and the shapes of these modes can vary depending on the geometry. The method for rapidly setting equivalent static seismic forces remains unexplored. In response to the above background, this study proposes a novel approach for calculating the seismic forces on single-layer reticulated shells using machine learning techniques. The shells in focus are pin-supported cylindrical reticulated shells, typically for the roofs of gymnasiums used as evacuation facilities during severe earthquakes in Japan. Machine learning uses numerical analysis results for approximately 20,000 shells, with varied spans, half-open angles, and aspect ratios. A method for preprocessing the principal vibration modes as image data is proposed, after which the imaged vibration modes are predicted from the shape parameters of the shell using a neural network. The prediction accuracy is analyzed, and a method for rapidly calculating seismic loads based on combining predicted vibration modes is proposed. These seismic loads are compared with the response spectrum method results, and their effectiveness is discussed.

Publisher

SAGE Publications

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3