The Mechanical Properties of the Heel Pad in Unilateral Plantar Heel Pain Syndrome

Author:

Tsai Wen-Chung,Wang Chung-Li1,Hsu Tsz-Ching,Hsieh Fon-Jou2,Tang Fuk-Tan

Affiliation:

1. Department of Orthopedic Surgery, Department of Physical Medicine and Rehabilitation, Chang-Gung Memorial Hospital, Taipei, Taiwan.

2. Department of Diagnostic Ultrasound, National Taiwan University Hospital, Taipei, Taiwan.

Abstract

Plantar heel pain syndrome has been attributed to entrapment neuropathy, plantar fasciitis, calcaneal spurs, and stress fractures of the calcaneus. Although deteriorated mechanical properties of the heel pads may play an important role in the pathogenesis of heel pain syndrome, this has received little notice. In this study, a specially designed compression relaxation device with a push-pull scale and a 10-MHz linear array transducer was used to determine thickness of the heel pad under different loading conditions. Twenty consecutive patients aged 29 to 77 years with unilateral plantar heel pain syndrome were enrolled. Thickness of heel pad bilaterally was measured when the heel pad was compressed by serial increments of 0.5 kg to a maximum of 3 kg and then relaxed sequentially. The load-displacement curve during a loading-unloading cycle was plotted, and the compressibility index and energy dissipation ratio of the heel pad were calculated accordingly. Phase I displacement of the heel pad (from 0 to 1 kg load) on the painless side was greater than that on the painful side ( P < 0.01), but there was no statistically significant difference between painless and painful sides in thickness of unloaded heel pads, compressibility index, or energy dissipation ratio ( P > 0.05). In conclusion, the affected heel pad in plantar heel pain syndrome was stiffer under light pressure than the heel pad on the painless side. The changed nature of chambered adipose tissue in a painful heel pad may be responsible for its increased stiffness under light pressure.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3