Osteogenic differentiation of human dental pulp stem cells on β-tricalcium phosphate/poly (l-lactic acid/caprolactone) three-dimensional scaffolds

Author:

Khanna-Jain Rashi123,Mannerström Bettina123,Vuorinen Annukka1234,Sándor George KB1235,Suuronen Riitta12346,Miettinen Susanna123

Affiliation:

1. Adult Stem Cells Group, Institute of Biomedical Technology, University of Tampere, Tampere, Finland

2. BioMediTech, Tampere, Finland

3. Science Centre, Tampere University Hospital, Tampere, Finland

4. Finnish Student Health Service, Tampere, Finland

5. Department of Oral and Maxillofacial Surgery, University of Oulu, Oulu, Finland

6. Department of Eye, Ear and Oral Diseases, Tampere University Hospital, Tampere, Finland

Abstract

Functional tissue engineering for bone augmentation requires the appropriate combination of biomaterials, mesenchymal stem cells, and specific differentiation factors. Therefore, we investigated the morphology, attachment, viability, and proliferation of human dental pulp stem cells cultured in xeno-free conditions in human serum medium seeded on β-tricalcium phosphate/poly(l-lactic acid/caprolactone) three-dimensional biomaterial scaffold. Additionally, osteogenic inducers dexamethasone and vitamin D3 were compared to achieve osteogenic differentiation. Dental pulp stem cells cultured in human serum medium maintained their morphology; furthermore, cells attached, remained viable, and increased in cell number within the scaffold. Alkaline phosphatase staining showed the osteogenic potential of dental pulp stem cells under the influence of osteogenic medium containing vitamin D3 or dexamethasone within the scaffolds. Maintenance of dental pulp stem cells for 14 days in osteogenic medium containing vitamin D3 resulted in significant increase in osteogenic markers as shown at mRNA level in comparison to osteogenic medium containing dexamethasone. The results of this study show that osteogenic medium containing vitamin D3 osteo-induced dental pulp stem cells cultured in human serum medium within β-tricalcium phosphate/poly(l-lactic acid/caprolactone) three-dimensional biomaterial, which could be directly translated clinically.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3