Advancements in cell-based therapies for the treatment of pressure injuries: A systematic review of interventional studies

Author:

Camesi Alianda1,Wettstein Reto12,Valido Ezra13,Nyfeler Nicole1,Stojic Stevan4,Glisic Marija45,Stoyanov Jivko15,Bertolo Alessandro16ORCID

Affiliation:

1. SCI Population Biobanking & Translational Research Group, Swiss Paraplegic Research, Nottwil, Switzerland

2. Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital of Basel, Basel, Switzerland

3. Department of Health Sciences, University of Lucerne, Lucerne, Switzerland

4. Cardiometabolic and Respiratory Research, Swiss Paraplegic Research, Nottwil, Switzerland

5. Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland

6. Department of Orthopaedic Surgery, University of Bern, Bern Inselspital, Bern, Switzerland

Abstract

The high recurrence and complications associated with severe pressure injuries (PI) necessitate the exploration of advanced treatments, such as cell-based therapies, to facilitate wound healing. Such techniques harness the ability of different cell types to promote angiogenesis, re-epithelialization of the skin, and tissue regeneration. This systematic review explores the efficacy of cell-based therapies and tissue engineering in treating deep PI. We searched for interventional studies using cells in the treatment of PI in adults in four online libraries (PubMed, Embase, Ovid Medline, and Cochrane; latest search 10th June 2023). We found one randomized clinical trial (RCT), two non-RCT, and three pre-post studies, comprising 481 study participants with PI (253 intervention/228 controls). The risk of bias was categorized as moderate due to minimal bias in outcome measurements, or high owing to unclear patient randomization methods, as assessed by the ROBINS-I, NIH, and RoB-2 tools. Four cell types were identified in the context of cell-based therapies of PI: bone marrow mononuclear stem cells (BM-MNCs, n = 2); hematopoietic derived stem cells (HSC, n = 1); macrophages and activated macrophage suspensions (AMS, n = 2); and cryopreserved placental membrane containing viable cells (vCPM, n = 1). Wound healing outcomes were observed in patients undergoing cell-based therapies, including complete wound closure (AMS, vCPM; n = 142), faster healing rate (BM-MNCs, AMS; n = 146), improved granulation tissue formation (HSC, n = 3) and shorter hospitalization time (BM-MNCs; n = 108) compared to standard of care, with no adverse reactions. PI healing rate decreased only in one study with BM-MNC therapy, compared to control ( n = 86). Based on the available data, though with limited evidence, it seems that macrophage deployment showed the most favorable outcomes. The results indicate that cell-based therapies offer a potential avenue for enhancing wound healing and tissue repair in PI; however, more extensive research is needed in this domain.

Funder

Swiss Paraplegic Foundation

HORIZON EUROPE Marie Sklodowska-Curie Actions

Swiss Paraplegic Research

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3