Additively manufactured bioceramic scaffolds based on triply periodic minimal surfaces for bone regeneration

Author:

Zhu Hong1ORCID,Wang Jinsi1,Wang Shengfa2,Yang Yue1,Chen Meiyi1,Luan Qifei1,Liu Xiaochuan1,Lin Ziheng1,Hu Jiaqi1,Man Kenny34,Zhang Jingying1

Affiliation:

1. The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China

2. Dalian University of Technology, Dalian, P.R. China

3. Department of Oral and Maxillofacial Surgery & Special Dental Care University Medical Center Utrecht, Utrecht, The Netherlands

4. Regenerative Medicine Center Urecht, Utrecht, The Netherlands

Abstract

The study focused on the effects of a triply periodic minimal surface (TPMS) scaffolds, varying in porosity, on the repair of mandibular defects in New Zealand white rabbits. Four TPMS configurations (40%, 50%, 60%, and 70% porosity) were fabricated with β-tricalcium phosphate bioceramic via additive manufacturing. Scaffold properties were assessed through scanning electron microscopy and mechanical testing. For proliferation and adhesion assays, mouse bone marrow stem cells (BMSCs) were cultured on these scaffolds. In vivo, the scaffolds were implanted into rabbit mandibular defects for 2 months. Histological staining evaluated osteogenic potential. Moreover, RNA-sequencing analysis and RT-qPCR revealed the significant involvement of angiogenesis-related factors and Hippo signaling pathway in influencing BMSCs behavior. Notably, the 70% porosity TPMS scaffold exhibited optimal compressive strength, superior cell proliferation, adhesion, and significantly enhanced osteogenesis and angiogenesis. These findings underscore the substantial potential of 70% porosity TPMS scaffolds in effectively promoting bone regeneration within mandibular defects.

Funder

Dongguan Science and Technology of Social Development Program

Basic and Applied Basic Research Foundation of Guangdong Province

Guangdong Medical University Undergraduate Innovation Experiment Project

Guangdong University Student Innovation Project

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3